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Introduction



● Morpheme = the smallest meaning-bearing unit of language

● Morph = the concrete form of morpheme

○ Need to distinguish between several forms of the same morpheme (modified by 

phonological changes): dech x dýchat x prodchnout

○ Simplification: Words are strings of morphs

■ Cf. Arabic.

○ Simplification: Root morph conveys lexical meaning

■ Cf. In Czech, the same morph (with the same lexical meaning) can be used as both
root and non-root: Předpoklad x přednosta; cf. Over x overbearing x overall

● Morphological segmentation: Given a word, divide the word to morphs
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Terminology



● Multiple resources contain morphological segmentation

○ Without morphological classification

○ With low-quality morphological classification

● State-of-the-art morphological segmentation (Sigmorphon 2022) often

does not include morphological classification

○ There will probably be more segmentation-only resources in the future

● Identification of the root could help in building derivational networks
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Motivation





Root identification



● Gold data

○ 7 Indo-European languages with manually annotated data

○ Data for 6 of the languages (not for Czech) taken from UniSegments

○ French, English, German, Croatian, Italian, Russian, Czech

○ For each language, 5000 words train data, 5000 words test data.

● Universal Derivations

○ Treebanks for all the 7 languages, not necessarily manually annotated
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Data



● MaxLen: The longest morph

● MinFreq: Frequency of morph in dictionary

● MinNeighborEntropy: min(max(H(wi-1/i+1|wi)))

● UnweighedMix: Unweighted combination of the above

● ProbabMix: Run UnweighedMix on all the data and pick the most 

common tag (root x non-root) for every morph. 

● Limitations: MinFreq, MinNeighborEntropy and UnweighedMix only pick the

best candidate, which significantly decreases accuracy for languages with

common compounding (German – oracle picking only one root: 57.5 %). 
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Methods - simple statistics



● DerivTree: Shortest edit distance from the derivational root

● DerivTree + UnweightedMix: add DerivTree as one of the factors in 

UnweightedMix

● LongestInDerivTree: Apply the previous on common substring (with

simple wildcards) of all the derivationally related words

● CRF classifier, trained on the training data (5000 words).

● Limitations: the DerivTree methods also pick only the best candidate. 
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Methods – derivational trees, CRF
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Results – word-level accuracy

Language ProbabMix UnweightedMix

+ DerivTree

CRF tagger

Czech 95.4 % 98.6 % 97.6 %

Croatian 91.9 % 97.1 % 98.3 %

English 91.0 % 85.5 % 94.0 %

French 92.9 % 94.8 % 94.4 %

German 83.4 % 55.9 % 92.2 %

Italian 90.8 % 96.1 % 96.2 %

Russian 80.1 % 78.1 % 90.2 %



● Most of the unsupervised methods cannot deal with multiple roots

● On data without compounds:

○ For Croatian and Italian, the best word-level accuracy is achieved by MinFreq (98.7 % and 

97.5 %)

○ UnweightedMix achieves 93.1 % to 98.1 %, is best for English and in 4 out of 7 cases

achieves better results than the CRF tagger.

○ DerivTree + UnweightedMix is the best solution for all the remaining languages and in 6 

out of 7 cases is better than CRF tagger; in the remaining case (Italian), the difference is

0.1%
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Error analysis - compounding



● Homomorphy = two morphemes are expressed by the same morph

● What is seen as root in the training data may not always be root (or even

the same morpheme).

● Bad also for the unsupervised methods - the statistics gets mixed up

● Root-Affix homomorphy for all the languages in less than 1.6 % of words

● Errors disproportionately common in words with root-affix homomorphy
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Error analysis - homomorphy

Method Czech German English French Croatian Italian Russian

Unweighted

Mix

6 % 8 % 8 % 6 % 14 % 17 % 22 %

ProbabMix 16 % 23 % 18 % 15 % 49 % 24 % 39 %

DerivTree + 

UM

4 % 8 % 8 % 6 % 12 % 16 % 22 %

CRF tagger 12 % 40 % 19 % 11 % 32 % 23 % 45 %



● Homomorphy (pod l ý x pod klad)

● Allomorphy (dých a t x pro dch nou t)

● Gold data hard to get (Biggest collection to date: USeg)

● Multiple roots recognition (iterative?)

● Resource-light inflection/derivation desambiguation
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Problems and future work



● Root identification given segmented words is fairly easy

● Simple statistical methods can be relatively strong

● Biggest problems are compounding and homomorphy
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Summary

ÚFAL Google Slides Template


