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What this talk is about

● Challenging times for linguistics:
○ Generative Pre-trained Transformers (GPT), large language 

models (LLM), versus linguistic theory;
○ innateness of language versus AI, i.e. humans versus machines;
○ linear versus hierarchical organization of language structure;
○ theory versus application.

● I address the challenges by explaining how linguists can learn from 
them;

● Why (derivational) morphology is in a privileged position in 
comparison to other linguistic (sub)fields, cf. Byte Pair Encoding (BPE);

● I identify missing resources for the study of derivational morphology. 



Preliminaries: Computer science and NLP vs. linguistic theory

● Significant advances in computer science and NLP in the past ten 
years or so.

● Generative Pre-trained Transformers (GPT), large language models 
(LLM), based on artificial neural networks (transformer architecture) 
and pre-trained on large data sets of unlabeled text entered the field 
of NLP.

● A GPT (LLM) does not use grammar of the type known from 
linguistic theory. 



Preliminaries: Computer science and NLP vs. linguistic theory 

● On November 30, 2022, OpenAI launched ChatGPT, a LLM chatbot with a user-friendly 
interface that was additionally trained for dialogue with humans. 

● ChatGPT raises questions about the future of linguistics, specifically of the correctness of 
the so-called Chomsky’s approach that claims for innateness of language; this approach 
has been one of the dominant research paradigms in linguistics for years.

● Chomsky’s approach (and most linguistic framework) assume a hierarchical organization 
of language evidenced in terms of syntactic trees (versus a linear analysis in LLMs). 

○ What are syntactic trees: representations and/or evidence for internal organization of 
language?

○ Direction of growth: in linguistics, trees grow from leaves to the root, while trees in 
computer science follow the natural direction of growth, i.e. from the root to leaves.



Rooted binary trees in linguistics and computer science 

Source: https://www.geeksforgeeks.org/binary-tree-data-structure/

Linguistics (Embick & Noyer 2012) CS

https://www.geeksforgeeks.org/binary-tree-data-structure/


Preliminaries: Computer science and NLP vs linguistic theory 

● ChatGPT was launched in 2022 and is fluent in an impressive number of 
languages. Chomsky’s approach celebrated 50 years of linguistics at MIT in 2011 
but still cannot generate fluent language. This situation could only mean that, 
most probably, Chomsky’s theory (and linguistic theory in general) is 
unnecessarily complex. 

● ChatGPT can understand and generate language based only on form (a linear 
sequence of words in a prompt), which implies that form and meaning in 
language are in a perfect relationship. As ChatGPT prompts are longer than a 
word, often even longer than a sentence, the perfect relationship between 
meaning and form should be visible only if one considers long sequences of words 
(tokens); later, I will explain the Byte Pair Encoding (BPE) algorithm that is used 
for tokenization in LLMs. 



Structure of the talk

● Byte Pair Encoding (BPE) and the role of subword units in NLP
● Complexity in computer science (Big O notation) and in linguistics 
● Form-focused analysis of derivational morphology

○ A mathematical method, Gauss-Jordan elimination, will be applied to derivational 
data from English and Polish 

○ Psycholinguistic experiment with native speakers of English and Polish
○ Discussion of results and findings 

● Conclusion
○ The future of research in (derivational) morphology
○ Missing resources for research on derivational morphology



Byte Pair Encoding (BPE), Sennrich et al. (2016)
● Tokenization: dividing a string of text into a collection of tokens.

[ChatGPT uses tiktoken, https://github.com/openai/tiktoken]

● Tokens typically serve as input to vectorization, i.e. tokens are converted 
into numerical representations for machine learning.

● Byte Pair Encoding (BPE) is a compression algorithm: it represents a large 
vocabulary with a small set of subword units.

● BPE iteratively merges the most frequent pair of consecutive bytes or 
characters in a text corpus until a predefined vocabulary size is reached. 
(ChatGPT uses cl100K_base).

Sennrich, Rico, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with 
Subword Units, arXiv:1508.07909v5 [cs.CL]

https://github.com/openai/tiktoken
https://arxiv.org/abs/1508.07909v5


Byte Pair Encoding (BPE)
Concepts related to BPE

● Vocabulary: A set of subword units that can be used to represent a text 
corpus.

● Byte: A unit of digital information that typically consists of eight bits.
● Character: A symbol that represents a written or printed letter or numeral.
● Frequency: The number of times a byte or character occurs in a text corpus.
● Merge: The process of combining two consecutive bytes or characters to 

create a new subword unit.                     

Source: https://www.geeksforgeeks.org/byte-pair-encoding-bpe-in-nlp/ 

https://www.geeksforgeeks.org/byte-pair-encoding-bpe-in-nlp/


BPE: Illustration 
Text corpus: “ab”, “bc”, “bcd”, and “cde” (i.e. consists of four words)

Step 1: Initialize the vocabulary
Vocabulary = {"a", "b", "c", "d", "e"}

Step 2: Calculate the frequency of each character (byte)
Frequency = {"a": 1, "b": 2, "c": 3, "d": 2, "e": 1}

Step 3a: Find the most frequent pair of two characters
The most frequent pair is "bc" with a frequency of 2.

Step 3b: Merge the pair
Merge "bc" to create a new subword unit "bc".

Step 3c: Update frequency counts
Update the frequency counts of all the bytes or characters that contain “bc”:

Frequency = {"a": 1, "b": 2, "c": 3, "d": 2, "e": 1, "bc": 2}

Step 3d: Add the new subword unit to the vocabulary
Add “bc” to the vocabulary:

Vocabulary = {"a", "b", "c", "d", "e", "bc"}

Repeat steps 3a-3d until the desired vocabulary size is reached.
Source: https://www.geeksforgeeks.org/byte-pair-encoding-bpe-in-nlp

https://www.geeksforgeeks.org/byte-pair-encoding-bpe-in-nlp/
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GPT tokenization

Source: https://platform.openai.com/tokenizer 

https://platform.openai.com/tokenizer


GPT tokenization

Source: https://platform.openai.com/tokenizer 

https://platform.openai.com/tokenizer


Token IDs



Token IDs



Subword units vs. morphemes



Subword units vs. morphemes



Subword units vs. morphemes



The most frequent token



The least frequent token



Tokenization of derived words



Tokenization of derived words



Complexity



Complexity 

● In science, a problem often allows for different solutions. The 
so-called Big O notation serves for assessment of the complexity of 
those solutions in mathematics and CS. 

● The Big O notation tells us how an algorithm slows as data gow. That 
is, complexity is not a property of data (which is the case in linguistics, 
but of the algorithm (analysis). 

● As an illustration let us evaluate two solutions of a task. 
[Note that the example is meant to help linguists understand the logic 
of the concept of complexity and is an oversimplification. In CS, the 
Big O notation evaluates the complexity of functions.]



The logic of the Big O notation 
Problem: Calculate the sum of the numbers from 1 to 100. 

Solution 1: 1+2+3, and so on to 100, i.e. 99 summations are necessary to calculate the 
sum.
Let us check the behavior of this solution as data grow, e.g. let us increase the amount of the 
data from 100 to 1000. Following the idea of Solution 1, to calculate the sum of the numbers 
from 1 to 1000, we have to perform 999 summations. That is, with the growth of the data, 
more effort is required to come to a solution. 

Solution 2: Based on the observation made by the young Gauss that 100+1 = 99+2 = 
98+3, and so on to 51+50, we can calculate the sum of the numbers from 1 to 100 in two 
steps: the first step involves addition, the second consists in multiplication: 
(1+100)*50=5050. An increase of the amount of the data from 100 to 1000, does not  change 
the algorithm and we can still calculate the sum of the numbers from 1 to 1000 in two steps: 
(1+1000)*50= 500500.



The logic of the Big O notation

Solution 1: 1+2+3, and so on to 100, i.e. 99 summations are necessary to calculate the sum.
Let us check the behavior of this solution as data grow, e.g. let us increase the amount of the data 
from 100 to 1000. Following the idea of Solution 1, to calculate the sum of the numbers from 1 to 
1000, we have to perform 999 summations. That is, with the growth of the data, more effort is 
required to come to a solution. 

Solution 2: Based on the observation made by the young Gauss that 100+1 = 99+2 = 98+3, 
and so on to 51+50, we can calculate the sum of the numbers from 1 to 100 in two steps: the first step 
involves addition, the second consists in multiplication: (1+100)*50=5050. An increase of the amount 
of the data from 100 to 1000, does not  change the algorithm and we can still calculate the sum of the 
numbers from 1 to 1000 in two steps: (1+1000)*50= 500500.

Both Solution 1 and Solution 2 give the same result, but the first solution 
is complex and therefore uninteresting, while Gauss’s solution is simple 
and elegant and has been used as a formula for the sum of an arithmetic 
progression ever since. 



Complexity of a linguistic analysis 
The ChatGPT approach to language relies on surface forms (for convenience, I speak of 
‘phonological information’), see Rule 1; while a linguistics approach usually relies on 
semantics, see Rule 2.

 
Rule 1, form-based: If a word A ends in -a, attach the suffix B to it.
Rule 2, semantics-based: If X is a particular type of a verb (e.g. an action verb), derive a 
particular type of a noun Y (e.g. an agent) by the attachment of the productive suffix Z (e.g. 
-er)?

● The information on which Rule 1 relies is not language-specific and is directly available: 
for the word A we have to evaluate whether it terminates in -a or not. 

● The semantic information on which Rule 2 relies requires additional effort to be 
discovered and Rule 2 is also language-specific, in the sense that we need some 
knowledge of the language from which the data come in order to apply this rule. 



Complexity of a linguistic analysis 
Rule 1, form-based: If a word A ends in -a, attach the suffix B to it.
Rule 2, semantics-based: If X is a particular type of a verb (e.g. an action verb), derive a 
particular type of a noun Y (e.g. an agent) by the attachment of the productive suffix Z (e.g. 
-er)?

● Rule 1 consists of two steps: 
i) we have to check whether A ends in -a and if yes, step ii);
ii) attach the suffix B.

● Rule 2 involves more than two steps: 
i) evaluation whether a word is a verb; if yes, step ii);
ii) ensure that the verb is of the type we need (an action verb); if yes, step iii);
iii) add the productive suffix -er to derive an agent noun, if iv);
iv) the derivation is possible; because e.g. to edit is an action verb but does not co-occur with 
-er (moreover, according to linguistic theory to edit is a backformation from editor, Manova, 
2011a).  

Rule 2 is more complex than Rule 1.



Rule 1: Example

Bulgarian has a suffixal definite article and indefinite nouns and adjectives in this language 
may end in -a. If semantics is considered, there should be four different -a morphemes, cf. 
the morphosyntactic feature values in (1) and (2), where all -a morphemes are bolded and 
indexed for convenience. The four different -a morphemes all select the definite article -ta 
(Manova and Dressler, 2001), though the article has allomorphs, see selo ‘village’ in (1d).

(1) Nouns: indefinite → definite
a. sg.fem: bluz-a1 ‘blouse’ → bluz-a1-ta ‘the blouse’
b. sg.masc: bašt-a2 ‘father’ →  bašt-a2-ta ‘the father’
c. pl.neut: sel-a3 ‘villages’ →  sel-a3-ta ‘the villages’  
d. cf. sg.neut: sel-o ‘village’ → sel-o-to ‘the village’

(2) Adjectives: indefinite → definite
sg.fem: krasiv-a4 ‘beautiful’ → krasiv-a4-ta  ‘the beautiful’



Form-based analysis of derivational morphology



Form-based analysis of derivational morphology
● Undoubtedly, English is the language with the most profoundly studied derivational 

morphology. (Overviews of research on derivational morphology from a cross-linguistic 
perspective in Lieber and Štekauer, 2014; Plag and Balling, 2016; and Lieber, 2017.)

● While more recent studies analyze English word-formation based primarily, if not exclusively, 
on semantics (Lieber, 2004, among many others), previous research known as the Stratal 
approach (Siegel, 1974; Selkirk, 1982; Kiparsky, 1982) is form-focused, see (3): based on 
phonological information (see the different types of juncture marked by ‘+’ and ‘#’ 
respectively) forms of affixes are distributed into different strata (classes) so that class II 
affixes are always outside class I affixes in the word-form. 

(3) English: Stratal approach, from Spencer (1991:79)
a. Class I suffixes:  +ion, +ity, +y, +al, +ic, +ate, +ous, +ive, +able, +ize
b. Class I prefixes:  re+, con+, de+, sub+, pre+, in+, en+, be+
c. Class II suffixes:  #ness, #less, #hood, #ful, #ly, #y, #like, #ist, #able, #ize
d. Class II prefixes:  re#, sub#, un#, non#, de#, semi#, anti#



Other form-focused analysis of English WF

● Fabb (1988) distributes the English suffixes into four groups: 

(4) English: Suffix-driven selectional restrictions (Fabb 1988)
a. Group 1: suffixes that do not attach to already suffixed words
b. Group 2: suffixes that attach outside one other suffix 
c. Group3: suffixes that attach freely
d. Group 4: problematic suffixes

 
● Closing suffixes: a particular suffixal form cannot be followed by other suffixes in a 

language, Szymanek (2000) for English (and Polish), see also Aronoff & Fuhrhop 
(2002). Closing suffixes have been established in a number of languages, Manova 
(2015b) is an overview of research on the topic.

● Another highly relevant observation regarding the order of English derivational 
suffixes is reported in Manova (2011b) and Manova and Knell (2021). The observation 
is made with the help of the Gauss-Jordan elimination. 



Gauss-Jordan elimination

Task: Solve this system of linear equations:

Example taken from: 
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Applied_Finite_Mathematics_(Sekhon_and_Bloom)/02%3A_Mat
rices/2.02%3A_Systems_of_Linear_Equations_and_the_Gauss-Jordan_Method 

https://math.libretexts.org/Bookshelves/Applied_Mathematics/Applied_Finite_Mathematics_(Sekhon_and_Bloom)/02%3A_Matrices/2.02%3A_Systems_of_Linear_Equations_and_the_Gauss-Jordan_Method
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Applied_Finite_Mathematics_(Sekhon_and_Bloom)/02%3A_Matrices/2.02%3A_Systems_of_Linear_Equations_and_the_Gauss-Jordan_Method


Gauss-Jordan elimination

Solution:
Write the augmented matrix.



Manipulate the matrix, i.e. interchange rows or use 
elementary operations such as addition and multiplication 
until you get the matrix in a reduced row echelon form, which 
gives the values of all variables and is thus the solution to the 
problem.

x = 1

y = 2

z = 3 



Gauss-Jordan elimination: The takeaway  

❏ Pay attention to the well-known 
❏ Manipulate well-known facts with the most simple logic
❏ Distribute the information so that there is only one option of 

a kind -- this option is the solution to the problem



Linguistic analysis: The combinability of the English suffix -ist

SUFF1 Lexical 
category of 
SUFF1 

Followed by SUFF2 
suffixes

-ist N -dom,  -ic, -y, -ize

Data from Aronoff & Fuhrhop (2002), based on OED, CD 1994



Gauss-Jordan: The combinability of the English suffix -ist
Making suffix combinations unique pieces of word structure

SUFF1 Lexical category 
of SUFF1 

SUFF2 suffixes 
according to their 
lexical categories

-ist N N: -dom (2)

ADJ: -ic (631), -y (5)

V: -ize (3)
Table from Manova (2011)

Data from Aronoff & Fuhrhop (2002), based on OED, CD 1994



Fixed combinations
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Predictable combination

SUFF1 Lexical category 
of SUFF1 

SUFF2 suffixes 
according to their 
lexical categories

-ist N N: -dom (2)

ADJ: -ic (631), -y (5)

V: -ize (3)
Table from Manova (2011)

Data from Aronoff & Fuhrhop (2002), based on OED, CD 1994



Types of suffix combinations: Summing up



English derivational morphology: a ChatGPT perspective
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English derivational morphology: a ChatGPT perspective



A more complex example 
from Polish



Processing of morphological structure by humans

● Considering the fact that derivational suffixes in English and Polish seem to form 
only fixed and predictable combinations, I hypothesized that native speakers 
should have memorized them and, consequently, should be able to process them 
without reference to meaning, that is, based exclusively on form. 

● To test this hypothesis, I designed a psycholinguistic experiment. Here I present 
only the results of the native speakers of English and Polish, but the experiment 
was also conducted with native speakers of German, Italian, Spanish and 
Slovene, and with advanced non-native speakers of English and German. 

● Overall, the results of all iterations converge. (For curious readers, the scores of 
the non-native speakers of English are reported in Manova and Knell, 2021; the 
scores of the native and non-native speakers of German can be found in Brosche 
and Manova, 2022). 



Psycholinguistic experiment 

Method
64 native Polish speakers and 45 native English speakers were tested, they all participated on a voluntary basis. 
The questionnaire presented to them consisted of three parts: 

● A series of general demographic questions regarding age, gender, nationality, native language(s), other 
languages spoken, level of education, and experience in a linguistic or other language-related field. 

● A small practice to ensure that the participants understood the task properly. The training examples were 
not part of the test stimuli. 

● The main task: 60 suffix combinations (e.g. -istic in English, -arny in Polish) were presented in a randomized 
order, and participants were asked to decide intuitively, as quickly as possible, which of the combinations 
exist and which do not exist as word terminations in the respective language. Of the 60 combinations, 30 
exist in the respective language and 30 do not. Of the existing combinations, 15 were productive (>10 
types) and 15 unproductive. Of the non-existing combinations, 15 were created from a permutation of an 
existing combination (reversing the order of the two suffixes such that the combination was not possible in 
English), and 15 were created through a spelling manipulation of an existing combination (changing one 
letter from an existing combination such that the new form does not exist in the respective language). No 
non-existing combinations included any phonological and/or orthographical impossibilities in the respective 
language. Participants were given a 10-minute time limit to complete the main task. (On average, the 
subjects used approximately one third of the time.)



Data analysis
We used independent t-tests to consider possible significance of overall scores, as well as for stimulus type: 
existing vs. non-existing and productive vs. unproductive combinations (Figure 1). 

Figure 1



Discussion
● The participants in the experiment did not need semantic cues to process suffix 

combinability, i.e. they could differentiate between existing and non-existing suffix 
combinations presented to them without lexical bases such as roots/stems/words. 

● Statistically significant were the differences between existing and non-existing 
combinations, and between productive (>10 types) and unproductive combinations. 

● English has very poor inflectional morphology, while Polish is characterized by a very 
rich inflectional system. Nevertheless, the results obtained for the two languages are 
virtually the same, the total score of the correct answers for English is 79% and 
78.86% for Polish, though combinations of three suffixes (trigrams, the case of Polish 
where two derivational suffixes are often followed by inflection) should be easier to 
recognize than combinations of two suffixes (bigrams, the case of English derivational 
suffix combinations). 

● Inflection did not seem to have an impact on the processing on suffix combinability in 
derivation. I therefore conclude that native speakers of Polish see inflection as forming 
a natural subword unit with the derivational material that precedes it. 



Discussion
● Since suffix combinability is not taught at school and all linguistic theories assume that a 

morphological derivation always starts with a root/stem, depending on the theory, the only 
plausible explanation why native speakers of English and Polish successfully accomplished a 
task they should not be able to solve is that they had subconsciously extracted and 
memorized adjacent suffixes in terms of bigrams and trigrams, during language acquisition 
(cf. the training of ChatGPT). 

● Further support to the conclusion that adjacent derivational and inflectional suffixes should be 
treated together provides Polish diminutive morphology. Polish, like the other Slavic 
languages (Manova 2015a), derives second-grade diminutives the forms of which contain a 
sequence of two adjacent diminutive suffixes: 

dom ‘house’ → DIM1 dom-ek ‘small house’ → DIM2 dom-ecz-ek ‘very small house’. 

The selection of the second diminutive suffix entirely depends on the phonological make-up 
of the first diminutive suffix. The selection of the DIM1 suffix is also form-driven in all but one 
case: the unproductive class of the feminine-gender nouns in -C selects DIM1 suffix based 
not on phonology but on gender.



DIM1 suffixes DIM2 suffixes
Nouns in Productive

(attach by addition)
Unproductive
(attach by substitution of a DIM1 
suffix, i.e. do not combine with 
DIM1 suffixes)

-C -ek
-ik / -yk
-uszek (unproductive)     

-ek -uszek, -aszek

-iszek /-yszek (unproductive)
-aszek (unproductive)
-ulek (unproductive)
-ka (unproductive, selects feminine nouns)

-a -ka -ka
-uszka (unproductive)
-iczka /-yczka (unproductive)

-o / -e -ko -ko

-uszko (unproductive)

Table 3: Combinability of the DIM suffixes in Polish (from Manova & Winzernitz 2011) 



GPT

The derivation-infection 
distinction in English



GPT

The derivation-inflection 
distinction in English



GPT

The derivation-inflection 
distinction in English



Conclusions
● Based on the BPE algorithm used for tokenization in LLMs, a mathematical 

method for problem solving, the so-called Gauss-Jordan elimination, and previous 
research on affix order (by other authors and my own), I put forward the idea of 
form-based analysis of derivational morphology and illustrated it with data from 
two typologically distinct languages, English with very poor inflectional 
morphology, and Polish with very rich inflection. 

● A psycholinguistic experiment with native speakers of Polish and English 
confirmed the correctness of the proposal: Native speakers do not need semantic 
cues to process affix ordering in derivation. They seem to have subconsciously 
memorized linearly adjacent affixes, be they derivational or inflectional, as bigrams 
and trigrams, without reference to semantics, which is exactly what happens 
during the subword tokenization in a LLM. 



Conclusions
● Morphology works with units of a very small length and the form-meaning correspondences in my 

analysis (and in (derivational) morphology in general) are not perfect, cf. the long sequences of form 
used in ChatGPT where form and meaning appear to be in a perfect one-to-one relationship. 
Nevertheless, a flexible approach, one that operates with defaults and a fixed reasonable number of 
exceptions (ten or fewer exceptions in my analysis) successfully derives new words from already 
suffixed ones in English and Polish.

● Future research is needed to see how the suggested approach works with unsuffixed bases, 
although cf. psycholinguistic research on derivations such as work-er and pseudoderivations such 
as corn-er, for the human parser they contain the same morpheme -er. 

● Form-focused (preferably cross-linguistic) resources for (derivational) morphology providing 
information about word structure in terms of bigrams and trigrams (linear sequences of adjacent 
subword units) and their frequency will be essential for future research. Such resources do not exist 
currently. 

● Claims that ChatGPT does not reflect human-like language processing in morphology (and not only) 
are, most probably, due to the lack of linguistic research that adopts a ChatGPT perspective on 
language. 



Thank you for your attention!
Stela Manova 

manova.stela@gmail.com 
https://homepage.univie.ac.at/stela.manova/ 
https://sites.google.com/view/stelamanova 
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