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Charles University, Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics
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Abstract

As a result of the ongoing push for unification, extension and integration of morphological
resources, need arises for reliable low-resource morph classification, especially root identification.
The paper reports on our experiments with multiple root identification methods with various
degrees of supervision, tested on several Indo-European languages, showing, among others,
that given morphological segmentation, surprisingly good root identification can be achieved
using simple unsupervised statistical methods, the main bottlenecks being compounding and
homomorphy resolution.

1 Introduction

The recent push for cross-lingual unification of morphological resources has, among others, brought
about the unification of various resources devoted to morphological segmentation (Batsuren et al., 2022b;
Žabokrtský et al., 2022), i.e. the task of dividing words into the smallest meaning-bearing units (mor-
phemes or morphs), as well as the closely connected task of morphological classification – dividing
the morphemes to classes (of various granularity). Nevertheless, in the available resources, the overall
quality and/or completeness of morphological segmentation tends to be higher than that of the morpho-
logical classification, or the classification is even missing completely. This is reinforced by the fact that
the state-of-the-art morphological segmentation approaches (as witnessed by the 2022 SIGMORPHON
shared task; Batsuren et al. 2022a) are based on neural networks and neither include morphological
classification nor can be straightforwardly used for obtaining it (even though there are some promising
exceptions; e.g. Bolshakova and Sapin 2021, who use neural networks for both morphological segmenta-
tion and classification with word-level accuracy of over 90 %). As a result, morphological segmentation
of reasonable quality is often easier to obtain than the corresponding morphological classification.

Furthermore, as the tasks of morphological segmentation and classification are closely connected to
derivational morphology and as the derivational resources for a given language often contain quite different
lexical material than that of the segmentation resources, the degree of their mutual transferability poses
an interesting problem. There have been attempts to use derivational trees for obtaining morphological
segmentation together with very coarse-grained classification (Bodnár et al., 2020). For an approach
using segmented words to build derivational trees, the natural first step seems to be automated morph
classification, especially root identification on the pre-segmented data (intuitively, it seems that we could
build derivation trees from segmented words using morph classification combined with homonymy and
allomorphy resolution); the methods used for root identification would be preferably as little supervised
as possible, to minimize requirements on the resources.

The present paper starts with a brief introduction of basic terminology (Section 2) and with an overview
of data sources and experiments related to our task (Section 3). Section 4 reports on our experiments with
multiple root identification methods with various degrees of supervision, tested on several Indo-European
languages. The results analysed in Section 5 document that surprisingly good root identification can be
achieved using simple unsupervised statistical methods. Concluding remarks and some ideas for future
work are sketched in Section 6.
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2 Theoretical background

Although morpheme and morph are traditional notions belonging to the core linguistic terminology, their
definitions vary in the literature. In the present paper, along the lines of Haspelmath (2020, p. 117),
morph is understood as “a minimal pairing of syntacticosemantic content and a string of phonological
segments” and considered as the basic unit of morphological analysis. Morphs are smaller than words (cf.
three morphs in play+er+s), or identical with them (e.g. chair consisting solely of a root morph). Morphs
repeat across sets of words, with certain (so-called, cranberry) morphs being the exception (Aronoff,
1976). As morphs are the basic building blocks in inflection and in word-formation processes, they may
appear in multiple formal variants in different contexts (allomorphy); cf. the root allomorphs sheep and
shep in the nouns sheep and shep+herd. Vice versa, a particular form can convey different meanings;
cf. homonymy of both the root and the inflectional marker in the noun bear+s and the verb bear+s. In
general, words are expected to be fully decomposable into morphs. In the present paper, this task is called
morphological segmentation, but alternative names are also used (morphemic segmentation, morphemic
analysis, etc.).

A root morph conveys lexical meaning. Other morphs, if present in the word’s structure, are classified
with respect to the root: the root is preceded by one or more prefixes (re- in re+play) and followed by one
or more suffixes (-er in play+er); a final suffix that expresses inflectional categories (-s in play+er+s) can
be distinguished by the term ending. In words with multiple roots (compounds), interfixes are often used
to link the roots (-s- in the German noun Arbeit+s+amt ‘employment office’). In this paper, the task of
morph classification is limited to the identification of roots.

The experiments are carried out on seven languages for which morphologically segmented and an-
notated data are available. Despite the high quality of the data, it should be kept in mind that the
segmentation recorded in the data is not always uncontroversial. It depends on the granularity of the
analysis, the inclusion of etymological aspects, and other criteria. Similarly, the classification as available
in the sources documents that the categories distinguished in theory are sometimes difficult to apply to
authentic data. There are always cases in the data that do not fully fit either category and require a
decision to be made. One such example is neoclassical formations, which are debated either as multi-root
words (compounds), or single-root words where the root is preceded by a prefix(oid) or followed by a
suffix(oid). Consistent decision-making is a challenge when annotating individual sources, even more so
across sources from different languages. See the classification of morphemes in German verbs and other
examples in the error analysis in Section 5.2.

3 Related work

3.1 Data resources

There are several relevant types of data resources, both mono- and multilingual. Instead of enumerating
the resources for all the included languages individually, in the following survey we will concentrate
on the unified multilingual databases. The corresponding papers usually provide a useful guide to the
monolingual resources included in the given project.

First of all, there are morphological segmentation databases. These vary in quality. Some of them,
like the multilingual derivational and inflectional database MorphyNet (Batsuren et al., 2021), are au-
tomatically or semi-automatically generated, so they cannot be used as gold data (at least once the
accuracy of the classification methods is close to the accuracy of the provided segmentation). Universal
Segmentations (UniSegments; Žabokrtský et al. 2022) is a multilingual collection of language resources
containing morphological segmentation. The resources differ in several important respects, including
origin (manually or automatically annotated) as well as the presence and granularity of morphological
annotation.

Closely connected to (or even overlapping with) these are multilingual morphological lexicons. The
largest unification effort to date, the UniMorph project (Batsuren et al., 2022b), contains in its latest
release both morphological segmentation and morphological classification for at least 16 languages.
Nevertheless, the segmentation is sometimes dubious or incompatible with our approach to morphological
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classification. Thus, for instance, in the Czech data, lemmas of unmotivated words (represented as root
nodes in derivational trees) are used instead of root morphs,1 while in the German data, the words are
segmented to morphemes (in the canonical form), not to morphs.

Finally, derivational networks, grouping words that come from the same derivational root, can be used
for distinguishing root morphs and derivational affixes. Furthermore, several of these already contain
morphological segmentation and classification. Universal Derivations (UDer; Kyjánek et al. 2020) is a
multilingual collection of derivational resources, unified to the form of collections of derivational trees.
That is, the words are organized in rooted tree structures with the edges representing the derivational
relation (child node was derived from parent node). There is a relevant overlap between resources included
in UDer and UniSegments, as some of the derivational resources also contain information relevant to
morphological segmentation and classification.

3.2 Morphological segmentation and classification
The methods used for morphological classificaton vary according to both the quantity and quality of re-
quired data; as a rule, the more information is included in the data, the less data is needed. For languages
with large and rich resources like Russian, both morphological segmentation and morphological classifi-
cation can be approached using neural networks (Bolshakova and Sapin, 2021). Even for morphological
classification of underresourced languages like Uspaneko (Ginn and Palmer, 2023) or Lezgi (Moeller and
Hulden, 2018), neural models have been used with considerable success (around 80 or 90 % accuracy),
especially given the very fine-grained tagset. It is to be noted, however, that in the case of Lezgi, where
the authors performed both segmentation and classification using both neural network and CRF classifier,
the CRF classifier proved to be more successful than the employed neural seq2seq network.

Even though the morph classification as such has not been much concentrated upon, it often appears as
a subtask or byproduct of other tasks. Thus Goldsmith (2001) combines minimum description length with
several heuristics to get candidate stems and suffixes, while Schone and Jurafsky (2001), or more recently
Soricut and Och (2015) induce morphological rules using automatically extracted affixes. Strongly
related to morphological classification is interlinear glossing. This task consists in finding morphological
glosses (i.e. lexical meaning in the target language and/or morphological categories expressed by the
morph), given a morphologically segmented text in a source language and its translation in a target
language. Although the current approaches dealing with low-resource languages (Zhao et al., 2020) or
CRF (McMillan-Major, 2020) yield interesting results, even there a significant amount of input data with
very fine-grained annotation is needed to achieve reasonable accuracy.

4 Experiments

4.1 Data
In our choice of test languages, we were limited primarily by the quality and accessibility of morphological
resources for individual languages. The quality of the segmentation resources is very important for the
reliability of our results as we will obtain our test data from them. We have therefore selected the languages
for which there exist manually segmented and annotated resources included in the UniSegments 1.0 project
(Žabokrtský et al., 2022), and we added Czech, for which we have our own manually annotated data.
Further, in some of our semi-supervised methods, we use derivational trees. As they are used more or
less as a basis for heuristics, there is no need to shun automatically generated data. We have therefore
used the derivational resources available in the Universal Derivations project (Kyjánek et al., 2020). The
resources are listed in Table 1.

4.2 Methods
As baselines, we have used three simple statistical heuristics. Firstly, we take as roots all the longest
morphs of the words (MaxLen). In the following methods, if not explicitly described otherwise, if two
morphs gain the same score (which should happen very rarely), we pick the first of them. Secondly,

1Czech lemmas are rarely simplex, monomorphemic words, because even unmotativated words can contain mandatory
inflectional affixes.
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resource included in language size lemmas x words morphs root tokens root morphs
CroDeriV UDer, USeg Croatian 15 657 Lemmas 65 455 15 819 4 569

MorphoLex USeg English 68 624 Words 151 960 77 308 20 153
Morpholex-FR USeg French 15 954 Words 29 087 16 290 11 085

CELEX USeg German 51 728 Lemmas 118 920 69 457 16 749
KuznetsEfremDict USeg Russian 73 447 Lemmas 318 647 86 726 6 912

DerIvaTario UDer, USeg Italian 10 991 Lemmas 31 246 10 991 5 566
Czech – Czech 10 438 Lemmas 40 155 10 438 1 985

Démonette UDer French 22 060
CatVar UDer English 82 675

DeriNetRU UDer Russian 337 632
DeriNet UDer Czech 1 027 665

Table 1: Morphological resources for segmentation and derivation used in our experiments. The Czech
data we use are included neither in UDer nor in USeg; information about the structure of the data is
included only for the gold segmentation data, not for the derivational tree databases

we label as root morph the morph with the fewest occurrences in the dictionary of segmented lemmas
or words (MinFreq). This is motivated by the hypothesis that in most of the languages homomorphy
between root and non-root morphs is unusual and there is only a limited number of affixes but a large
number of root morphs. Thus, in the dictionary, roots will appear in conjunction with the affixes (which
are few), and therefore not as often as the affixes, which will appear in conjunction with (many) roots.
As our third baseline solution (MinNeighborEntropy), following a similar observation, namely that the
root morphs predict their neighbouring morphs much better than the affixes, we compute for each morph
in the dictionary the entropies of distributions of left and right neighbouring morphs. We then mark
as root the morphs with the smallest maximum of the two entropies. It should be noted, however,
that the last observation is not self-evident; it would not hold in cases when there is more than one
compulsory suffix (or prefix) and when some of the affixes are always surrounded by other affixes.
Fourthly (UnweightedMix), we combine the first three heuristics in an unweighted way (using the inverse
value when required) and use the resulting score. Almost all the above-mentioned methods (except for
MaxLen) are severely limited by the fact that they can select at most one root morph per word. We have
therefore in our last fully unsupervised solution ProbabMix used normalized morph scores from the last
heuristics UnweightedMix, obtaining a probability distribution, subsequently averaging the probabilities
(of given morph being root) across the data. Then, we select as root morphs all the morphs achieving at
least 5 % probability.2

As the second section of our experiment, we use the information contained in the UDer derivational
databases. We have experimented with two approaches: Firstly, we computed the edit distance between
each morph and the root of the derivational tree of the current word and all its child nodes, either by itself
DerivRoot or in combination with the previous three unsupervised heuristics DerivRoot + UnweightedMix.
Secondly, in the LongestInDerivTree method, for some of the languages, we used all the words in the tree
to get a rough approximation of the root by finding the longest common part of the words (including a
“?” wildcard to partially handle allomorphy).

Finally, for comparison with the supervised methods, we have trained a CRF tagger as implemented
in the nltk package (Bird, 2006), on training data from UniSegments; that is, we treated the segmented
words as sentences and the morphs as tagged words (with only roots and non-roots being distinguished
as the tagset categories).

5 Evaluation

5.1 Evaluation methods
For our experiments, we have used data in Croatian (Table 2), German (Table 3), English (Table 4), Italian
(Table 5), Russian (Table 6), French (Table 7), and Czech (Table 8). We have run our experiments on
5 000 randomly selected segmented words from each of the languages; for the only supervised method,

2The hyperparemeters were selected arbitrarily and could probably be improved, given large-enough development data; that
would, nevertheless, change the setting from unsupervised to (semi-)supervised
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method word-level accuracy average precision average recall average F-measure
OracleOneRoot 98.6 % 100 % 99.3 % 99.5 %

MaxLen 86.0 % 91.9 % 97.2 % 93.4 %
MinFreq 97.3 % 98.7 % 98.0 % 98.3 %

MinNeighborEntropy 97.1 % 98.5 % 97.8 % 98.0 %
UnweightedMix 96.7 % 98.1 % 97.4 % 97.7 %

ProbabMix 91.9 % 95.8 % 99.0 % 96.8 %
DerivTree 95.8 % 97.2 % 96.5 % 96.7 %

DerivTree + UnweightedMix 97.1 % 98.5 % 97.8 % 98.1 %
LongestInDerivTree 97.3 % 98.7 % 98.0 % 98.2 %

CRF tagger 98.3 % 98.7 % 99.1 % 98.8 %

Table 2: Croatian

method word-level accuracy average precision average recall average F-measure
OracleOneRoot 57.5 % 100 % 78.2 % 85.3 %

MaxLen 59.6 % 94.5 % 80.3 % 84.1 %
MinFreq 55.7 % 97.6 % 76.1 % 83.2 %

MaxNeighborEntropy 55.7 % 97.6 % 76.1 % 83.1 %
UnweightedMix 55.8 % 97.7 % 76.3 % 83.3 %

ProbabMix 83.4 % 97.0 % 92.7 % 93.7 %
DerivTree 55.7 % 97.7 % 76.2 % 83.2 %

DerivTree + UnweightedMix 55.9 % 97.8 % 73.4 % 83.4 %
CRF tagger 92.2 % 97.3 % 98.0 % 97.1 %

Table 3: German

method word-level accuracy average precision average recall average F-measure
OracleOneRoot 87.8 % 100 % 93.9 % 95.9 %

MaxLen 84.2 % 95.2 % 93.5 % 93.2 %
MinFreq 85.3 % 97.3 % 91.3 % 93.3 %

MinNeighborEntropy 85.4 % 97.4 % 91.4 % 93.4 %
UnweightedMix 85.6 % 97.7 % 91.6 % 93.6 %

ProbabMix 91.0 % 97.3 % 96.5 % 96.3 %
DerivTree 85.2 % 97.2 % 91.2 % 93.2 %

DerivTree + UnweightedMix 85.5 % 97.5 % 91.5 % 93.5 %
CRF tagger 94.0 % 97.7 % 97.6 % 97.2 %

Table 4: English

the CRF tagger, we have additionally selected another set of 5 000 words as training data. The sizes
of the train and test sets were selected so that all the methods can be tested on the same data and (for
the supervised method) the size of training data is the same for all the methods (as for the unsupervised
methods, the test set is the train set). Since many of our methods only select the best candidate for the
root (all apart from the CRF Tagger, MaxLen and ProbabMix), we have also run an oracle experiment
(OracleOneRoot), selecting at most one root morph for each word.

We use four evaluation metrics, one on the word-level (accuracy) and three on the morph level (resp.
root-level): precision, recall, and F-measure, averaged over the words (so that every word has the same
weight). For the morph-level metrics, we formulate the task rather as root identification than morph
classification to gain a rough error analysis. Thus, for most of the languages, for instance, precision
significantly higher than recall would mean that most of the errors were false negatives; i.e. a root was
identified incorrectly as a non-root.

5.2 Error analysis

In the evaluation, we take the test data at the face value. Nevertheless, it should be noted that some of
the measured errors might be actually due to errors in the data. Firstly, the provided segmentation might
be incorrect. For example, the German data contain the word übersichtlich segmented erroneously as
über+sich+tlich; this caused wrong classification of the morph -tlich as root by the MinFreq baseline,
as the erroneous morph appears very infrequently in the data. Second, the errors might be caused by
(seemingly) arbitrary decisions in the morph classification in the data. For example, the German data,
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method word-level accuracy average precision average recall average F-measure
OracleOneRoot 100 % 100 % 100 % 100 %

MaxLen 67.7 % 75.8 % 84.2 % 78.5 %
MinFreq 97.5 % 97.5 % 97.5 % 97.5 %

MinNeighborEntbropy 96.8 % 96.8 % 96.8 % 96.8 %
UnweighedMix 96.6 % 96.7 % 96.7 % 96.7 %

ProbabMix 90.8 % 94.4 % 98.0 % 95.6 %
DerivTree 87.7 % 87.7 % 87.7 % 87.7 %

DerivTree + UnweighedMix 96.1 % 96.1 % 96.1 % 96.1 %
CRF tagger 96.2 % 97.1 % 97.9 % 97.3 %

Table 5: Italian

Russian Word-level accuracy average precision average recall average F-measure
OracleOneRoot 82.5 % 100 % 91.1 % 94.1 %

MaxLen 60.6 % 81.2 % 85.6 % 80.4 %
MinFreq 76.4 % 93.2 % 84.7 % 87.5 %

MinNeighborEntropy 74.9 % 91.7 % 83.2 % 86.0 %
UnweightedMix 76.9 % 93.8 % 85.3 % 88.1 %

ProbabMix 80.1 % 92.0 % 94.8 % 92.0 %
DerivTree 72.3 % 88.8 % 80.5 % 83.2 %

DerivTree + UnweightedMix 78.1 % 94.9 % 86.4 % 89.2 %
CRF tagger 90.2 % 96.0 % 95.2 % 95.0 %

Table 6: Russian

method word-level accuracy average precision average recall average F-measure
OracleOneRoot 97.8 % 100 % 98.9 % 99.2 %

MaxLen 87.2 % 92.0 % 94.0 % 92.4 %
MinFreq 94.6 % 96.8 % 95.7 % 96.1 %

MinNeighborEntropy 94.7 % 96.9 % 95.8 % 96.2%
UnweightedMix 94.7 % 96.9 % 95.8 % 96.1 %

ProbabMix 92.9 % 96.5 % 97.8 % 96.7 %
DerivTree 94.6 % 96.8 % 95.7 % 96.0 %

DerivTree + UnweightedMix 94.8 % 97.0 % 95.9 % 96.2 %
LongestInDerivTree 94.8 % 97.0 % 95.9 % 96.3 %

CRF tagger 94.4 % 97.0 % 96.8 % 96.7 %

Table 7: French

method word-level accuracy average precision average recall average F-measure
OracleOneRoot 100 % 100 % 100 % 100 %

MaxLen 76.1 % 86.1 % 97.4 % 89.7 %
MinFreq 96.1 % 96.1 % 96.1 % 96.1 %

MinNeighborEntropy 96.1 % 96.1 % 96.1 % 96.1 %
UnweightedMix 97.2 % 97.2 % 97.2 % 97.2 %

ProbabMix 95.4 % 97.6 % 99.9 % 98.4 %
DerivTree 97.7 % 97.7 % 97.7 % 97.7 %

DerivTree + UnweightedMix 98.6 % 98.6 % 98.6 % 98.6 %
CRF tagger 97.6 % 98.5 % 99.5 % 98.8 %

Table 8: Czech

containing annotations like aus+(führ)+en, but also (unter)+(führ)+en,3 do not seem to draw any clear
borderline between prefixes and roots. Some of the undesirable features of the data might however also
favor the systems. One of these is undersegmentation; in some cases, the words are not segmented at all,
making root identification trivial. Thus, for instance, the English data contain clearly undersegmented
words like (bishopric), (salsify) or (wringing).

One of the main limitations of most of the baseline solutions is the inability of the heuristics to recognize
multiple root morphs in the same word; this, while not an issue for languages and word categories where
compounds are scarce (like Croatian verbs) did significantly decrease the accuracy of the algorithm
in languages where compounds are common (e.g. German; compare the average precision and recall;
compare also with results of the oracle experiment). For example, on Czech, the best performance was

3The morphs labeled as roots are in brackets.
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language avg morphs per word compounds root-affix homomorphy avg word-level precision best word-level precision
Czech 3.84 0.0 % 0.1 % 94.3 % 98.6 %

German 2.48 42.5 % 1.6 % 64.3 % 92.2 %
English 2.23 12.2 % 0.6 % 87.0 % 94.0 %
French 1.83 2.2 % 0.4 % 93.5 % 94.8 %

Croatian 4.18 1.4 % 0.2 % 95.0 % 98.3 %
Italian 2.82 0.0 % 0.5 % 91.2 % 97.5 %

Russian 4.33 17.4 % 1.5 % 76.2 % 90.2 %

Table 9: Morphological complexity

method Czech German English French Croatian Italian Russian
MaxLen 76.1 % 88.5 % 92.0 % 88.8 % 86.8 % 67.7 % 68.9 %
MinFreq 96.1 % 96.8 % 97.1 % 96.8 % 98.7 % 97.5 % 92.4 %

MinNeighborEntropy 96.1 % 96.7 % 97.2 % 96.8 % 98.5 % 96.8 % 90.6 %
UnweightedMix 97.2 % 96.9 % 97.4 % 96.8 % 98.1 % 96.6 % 93.1 %

ProbabMix 95.4 % 93.7 % 95.4 % 94.4 % 92.3 % 90.8 % 85.2 %
DerivTree 97.7 % 96.9 % 96.9 % 96.7 % 97.2 % 87.7 % 87.5 %

DerivTree + UnweightedMix 98.6 % 97.1 % 97.3 % 96.9 % 98.5 % 96.1 % 94.5 %
CRF tagger 97.6 % 93.0 % 96.3 % 96.4 % 98.4 % 96.2 % 94.3 %

Table 10: Word-level accuracy on data without compounding

achieved by DerivTree + UnweightedMix, which selects only one root, while for German, even the simplest
baseline (MaxLen) able to select more than one root performed better than the oracle. Approximately the
same effect, although on a much smaller scale, can be observed for English and Russian. Furthermore,
for languages rich in compounding, the ProbabMix method performed significantly better than all the
remaining non-CRF heuristics. However, if we remove the compounds from the test data, the word-level
accuracy changes significantly (see Table 10). In such a setting, both the CRF tagger and ProbabMix are
outperformed by other methods for all the languages; the best methods are then either the simple statistics
(MinFreq or UnweightedMix) or DerivTree + UnweightedMix.

Although in most of the metrics and most of the languages, the CRF tagger yields the best results,
in all but two of the languages (Czech and French) some unsupervised method is more accurate than
those using derivational trees. Furthermore, the difference in performance between the heuristics and
the CRF classifier is often almost negligible. Interestingly, the results do not seem to be affected by the
morphological complexity of the languages, as documented by Table 9.

Another interesting question is the influence of homomorphy and allomorphy resolution. Homomorphy
might affect the performance either indirectly (in the computation of the heuristics) or directly, as is the case
for the ProbabMix method, which presupposes no homomorphy between roots and affixes. Allomorphy
might cause errors especially for the methods using derivational trees, where the edit distance between
the morphs and the root word is used. It should be noted, however, that allomorphy might be irrelevant
or even work in favour of some of the methods (e.g. MinFreq). Both homomorphy and allomorphy are
very hard to detect in a completely unsupervised setting, although some approaches could possibly be
adapted from the comparable task of word sense disambiguation.

While we do not possess any reliable method to detect allomorphy-related errors even with the gold
data, homomorphy of root and non-root morphs is easily detectable in the gold data. As listed in Table 9,
the languages vary in the percentage of instances of root-affix homomorphy in the test data. A comparison
of these with the percentage of homomorph misclassification (in Table 11) shows that even the indirect
influence of homomorphy is considerable in the statistics – both the UnweightedMix and the DerivTree
+ UnweightedMix err disproportionately often in homomorph classificaton, although the disproportion
is not so marked as for the ProbabMix and the CRF tagger. It is also noteworthy that the CRF tagger is
in some cases more prone to homomorphy-related errors than the simple ProbabMix method (German,
Russian).
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method Czech German English French Croatian Italian Russian
UnweightedMix 6 % 8 % 8 % 6 % 14 % 17 % 22 %

ProbabMix 16 % 23 % 18 % 15 % 49 % 24 % 39 %
DerivTree + UnweightedMix 4 % 8 % 8 % 6 % 12 % 16 % 22 %

CRF tagger 12 % 40 % 19 % 11 % 32 % 23 % 45 %

Table 11: Homomorphy-related errors

6 Conclusion

We have compared several root identification methods on seven Indo-European languages, using simple
unsupervised heuristics, derivational-tree-based heuristics, and a CRF tagger. The experiments show
that simple unsupervised statistical methods are sufficient for cross-linguistically highly precise root
identification. While the results can be slightly improved using derivational trees, the CRF taggers, trained
on a small dataset, usually achieved further improvement. The main bottlenecks of the current methods
seem to be compounding, homomorphy resolution (for the CRF tagger), and potentially allomorphy
resolution (for the derivational trees).

In the future, as the unsupervised heuristics proved to provide unexpectedly good results, we would
like to further probe their possible combination with other methods, possibly as sources for generating
data, on which a neural classifier could be pre-trained. We would also like to concentrate on (preferably,
low-resource) homomorphy and allomorphy resolution, drawing inspiration from the approach by Harsha
et al. (2022).

Secondly, we would like to concentrate on increasing the granularity of the classification. Given
morphological lexicons for the respective languages, derivational databases could then be used similarly
as in John and Žabokrtský (2023). We would also like to mine other available high-quality multilingual
resources containing morphological information, notably the Universal Dependencies (Nivre et al., 2020),
which contain rich morphological annotation in the form of so-called Universal Features.
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Khuyagbaatar Batsuren, Gábor Bella, Aryaman Arora, Viktor Martinovic, Kyle Gorman, Zdeněk Žabokrtský,
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